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Let X, ,..., X,, be n disjoint sets, For 1 < i < n and 1 <j< h let A, and B, be sub- 
sets of X, that satisfy IA,I<r, and IB,J<s, for l<i<n, l<j<h, (U,Ay)n 
(U,B,)=@ for l<j<h, (U,A,)n(U,B,,)#12( for l<j<lgh. We prove that 
h<J-J:_, 1”;’ a). This result is best possible and has some interesting consequences. 
Its proof uses multilinear techniques (exterior algebra). lrj 1985 Academic Press. Inc. 

1. INTR~OLJOTI~N 

Our main result in this paper is the following. 

THEOREM 1.1. Let X, ,..., X, be n disjoint sets and let r1 ,..., r, and s, ,..., s, 
be positive integers. For 1 < id n and 1 Q j < h let A, and B, be subsets of Xi 
that satisfy 

lA,y < ri and IBijl<sj for l<i<n, l<j<h. (1.1) 

(v~+oB~)=@ for lGj<h. (1.2) 

($JAi,)“(vBi,)#@ for l<j<l<h. (1.3) 

Then 

(1.4) 

This result is easily seen to be best possible and it clearly implies the 
following weaker assertion. 

COROLLARY 1.2. For 1 d i < n and 1 <j< h let Xi, si, ri, A,, and B, 
satisfy the hypotheses of Theorem 1.1 and assume, in addition, that 
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(iJiA,i)n(UiBi,)#fafOr lGl<j<h (i.e., (iJiA,)n(tJiB,)=O iffj=Z). 
Then (1.4) holds. 

Special cases of Theorem 1.1 and Corollary 1.2 were proved by several 
authors. Corollary 1.2 with n = 1 was proved by Bollobas [2], and 
rediscovered by Jaeger and Payan [8] and by Katona [ 12]. Theorem 1.1 
with n = 1 was proved by Frank1 [7] by modifying an argument of Lovasz 
[ 131 and was also proved in an equivalent form by Kalai [lo]. 

As we shall see in Section 3, a special case of Corollary 1.2 with n = 2 
was conjectured by Erdos, Hajnal, and Moon [6] and proved by Bollobas 
[3] and by Wessel [lS]. 

The proof of Theorem 1.1 uses multilinear techniques (exterior algebra). 
Similar methods were used by Lovasz in [ 131 and by Kalai in [ 10, 111. It 
is worth noting that we can prove Corollary 1.2 in a purely combinatorial 
manner, but we do not know any such proof to (the stronger) Theorem 1.1 
(even for n = 1). 

Theorem 1.1 has many interesting applications. After proving it in the 
next section we use it in Section 3 to obtain some extensions of results of 
Bollobas, Erdos, Hajnal, Moon, Kalai, and Wessel on saturated graphs 
and hypergraphs. 

In a forthcoming paper [l] of Kalai and the present author we show 
how the case n = 1 in Theorem 1.1 supplies a short proof of the well-known 
upper bound theorem for polytopes and of some related results in con- 
vexity. 

2. THE PROOF OF THE MAIN RESULT 

We begin with a brief summary of the algebraic background needed. 
More details about exterior algebra can be found, e.g., in [14]. 

Let V= R” be the m-dimensional real space with the standard basis 
e, ,..., e ,n. Put M= (1, 2 )...) m>. The exterior algebra /\ Y is a 
2”-dimensional real space, (in which V is embedded), equipped with a mul- 
tilinear associative multiplication A. For S = {ii, i*,..., i,} c M, with 
i,ci,c ‘.. <is put e,=ej, A ... A ej3. The set {e s: S c M} forms a basis 
of A V. For 0 d k <m, A” V is the (;)-dimensional subspace of A V span- 
ned by (es: SCM, IS/ = k}. 

Our proof uses the following property of the A product. Suppose 
r + s = m and let vi ,..., v,, U, ,..., u, E V. Define v = v, A v2 A . . . A v, E A’ V 

andu=u, A ... A u,E/\~ V.Thenur\ v#Oifandonlyifo ,,..., U,,U ,,..., U, 
are independent in V. In particular, if {v, ,..., u,} n (u, ,..., u,} # Qr then 
UAV=o. 

Proof of Theorem 1.1. Clearly we may assume that [,4J = ri and 
]f?ijl =sI for 1 di<n, 1 <j<h. For 1 di<n let V,= Rrt+‘~ be an (ri+s,)- 
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dimensional real 
general position in 
Vi). 

space. Let {z~:~E(IJ~A,)u(U~B,)) be vectors in 
Vi (i.e., every ri+si of these vectors are independent in 

Consider the following two l-I;= I (‘1: “I)-dimensional real subspaces of 
the exterior algebra A ( V, @ . . . @ V,) in which each Vi is naturally imbed- 
ded: 

and 

For 1 <j< h define 

n 

y,=/j AZ: EV 
i=l ( ) teA, 

and 
” 

yj=/j /j zy EV. 

i=l ( ) (lEB!J 

Note that the properties of the A -product, (1.2) and the general position 
of the z?s imply that 

Yj A jj#O for l<j<h. (2.1) 

Similarly (1.3) implies that 

yj A y,=o for 16 j-cldh. (2.2) 

To complete the proof we show that the set { yj: 1 < j < h} is linearly 
independent in V and thus h < dim V= n;= I (fiz%). Indeed, suppose this is 
false and let 

C c~ Yj = O (2.3) 
iEJ 

be a linear dependence, with cj # 0 for j E J. Put 1 = max{ j: j E J}. Combin- 
ing (2.2) and (2.3) we obtain 0 = (c,,, cj yj) A y, = cjE J cj( yj A Y,) = 
c,(y, A jr), which together with (2.1) supplies the contradiction c,= 0. This 
completes the proof. 1 
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3. SATURATED GRAPHS AND HYPERGRAPHS 

In this section we use Theorem 1.1 to obtain some results about 
saturated graphs and hypergraphs. Some other results in this direction can 
be found in [ 111. We begin with some notation and definitions. 

Let e(G) denote the number of edges of a graph G and let u(G) denote 
the number of its vertices. For a graph H let N(G, H) denote the number of 
subgraphs of G isomorphic to H. K, is the complete graph on 1 vertices, 
K,,, is the complete bipartite graph with 1 vertices in one class and m in the 
other, and G2(l, m) denotes a bipartite graph with I vertices in one class 
and m in the other. 

Following Bollobis [S, pp. 308, 325, 3621 we say that G is strongly 
H-saturated if N(G, H) < N(G +, H) whenever G+ is obtained from G by 
the addition of an edge. We say that G is weakly H-saturated if there is a 
sequence of graphs G = G, c G, c . . . c G, = KDcGj such that e(G,) = 
e(G,_ i) + 1 and N(G,, H) > N(G,- i, H) for 1 < i < t. Clearly, every strongly 
H-saturated graph is also weakly H-saturated. 

Similarly, if H = (V, E) is bipartite with bipartition V= V, u V, then 
G = G2(1, m) is strongly H-bisaturated if the number of H’s in G (with V, in 
the first class of vertices of G and V, in the second) increases whenever we 
add an edge joining vertices belonging to different classes. G is weakly 
H-bisaturated if there is a sequence of graphs G= GOc 
G, c ... cGt=K,,, such that Gi is obtained from Gi- i by adding an edge 
joining vertices belonging to different classes and there exists a copy of H 
in Gi (with V, in the lirst class of vertices and V, in the second) which is 
not in G,-i (1 <i<t). 

Let f,(f, H) (fJZ, H)) denote the minimal possible number of edges in a 
strongly H-saturated (weakly H-saturated) graph on 1 vertices. Similarly, 
for a bipartite graph H let g,(E, m, H) (g,(l, m, H)) denote the minimal 
possible number of edges in a strongly H-bisaturated (weakly 
H-bisaturated) graph G = G,(f, m). 

The main result of Erdos, Hajnal, and Moon in [6] is that for 3 <r < 1 

f3(4Kr)=(i)-(‘;+‘) (=(r-2).l--(‘il)). (3.1) 

This was generalized by Bollobas to hypergraphs in [2]. The authors of 
[6] conjectured that for 2 <r d 1,2 < t <m, 

g,(l,m, K,,)=l.m-(l-r+ l)(m- t+ 1). (3.2) 

This was proved by Bollobh [3] and Wessel [lS]. In [4] (see also [S, 
p. 3621) Bollobas conjectured that 

.K,,=(;)-~-;+2) (= f,(f, K,)). (3.3) 
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This conjecture was proved by Kalai in [ 111 using exterior algebra and in 
[9] by showing that every weakly K,-saturated graph is (r -2)-rigid. 

Here we show that all these results are easy consequences of 
Theorem 1.1. We also prove the following theorem that extends (3.2) 
analogously to the way (3.3) extends (3.1). 

THEOREM 3.1. For 2<r<land2<t<m, 

g,(l,m,K,,)=l.m-(l-r+ l)(m-t+l) (= g,U, m, K.,)). (3.4) 

We further show how all these results can be generalized to hypergraphs. 
We close the paper with a proof of the following theorem. 

THEOREM 3.2. (i) For every fixed graph H the limit lim,, o. f,(l, H)/l 
exists. 

lim (ii) F 
or every fixed bipartite graph H and every fixed m, the limit 

I-m g,(l, m, H)/I exists. 

It is worth noting that all the above-mentioned results about strongly 
saturated graphs are consequences of Corollary 1.2 and thus can be proved 
without any algebraic tools. The corresponding results for weakly saturated 
graphs ((3.3) and (3.4)) follow from Theorem 1.1 and we do not know how 
to prove any of them in a pure combinatorial method. 

Proof of (3.1) and of (3.3). Since every strongly K,-saturated graph is 
also weakly K,-saturated and since the graph G= (V, E) with 
v= { 1, 2,..., I} and E={ij: {i,j}n(l,2 ,..., r-2}#@} is strongly 
f(,-saturated, we conclude that 

In order to complete the proof we must show that 

fw(L K) a (g-r-;“). 

Let G be a weakly K,-saturated graph on the vertices I’= (1,2,..., I). Sup- 
pose G=GOcG,c ... c G, = KI is a sequence of graphs, where Gj is 
obtained from GjP i by adding the edge ej and let K{ be the set of vertices of 
a copy of K, included in Gi but not in G,- i (1 <j < t). One can easily 
check that n=l,X,=V,r,=l-r,s,=2,h=t, and A,=V\Ki,B,=e, 
(1 <j< h) satisfy the hyotheses of Theorem 1.1. Therefore t < (‘-‘,+2) and 
the number of edges of G is k (i) - (I-;+ *), as needed. 1 
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Proof of (3.2) and of Theorem 3.1. Since every strongly K,,,-bisaturated 
graph is also weakly K,,,-bisaturated and since the graph G = G,(f, m) with 
classes of vertices {yr,..., yl) and {zi,..., z,} in which yizj is an edge iff 
i < r - 1 or j < t - 1 is strongly K,.,-bisaturated, we conclude that 

g,.(l, m, K,,,)<g,(Z, m, K,,,)dl.m-(l-r+ l).(m--t-!- 1). 

In order to complete the proof we must show that 

g,,(1,m, K,,,)aI.m-(l-r+ i).(m-t+ 1). 

Let G = G2(1, m) be a weakly K,,,-bisaturated graph on the classes of ver- 
tices VI = (Y, ,“.> YJ and V2 = {zi,..., zm}. Suppose G=Goc 
G, c . ’ . c G,, = K,,, is a sequence of graphs, where G, is obtained from 
G,- , by adding the edge ej that joins a vertex of V, to a vertex of V2 and 
let K;,, be the set of vertices of a copy of K,., (with r vertices in V, and t in 
V,) included in Gi but not in G,- , (1 ,<j< h). One can easily check that 
n=2, XI= V,, X2= V,, r,=l-r, rZ=m-t, s,=sz=l, and A,= V,\K!.,, 
B, = V,n ej for 1 6 i< 2 and I <j,< h, satisfy the hypotheses of 
Theorem 1.1. Therefore hd(‘-;+‘)~(m-,‘+l)=(I-r+l)~(m-t+l) and 
the number of edges of G is at least /.rn-(I-r+l).(m-t+l). This 
completes the proof. 1 

Remark 3.3. Although f,(l, K,.) =f,(l, K,), the extremal examples are 
not the same and there are many weakly K,-saturated graphs withf,,(l, K,) 
edges that are not strongly K,-saturated. The same holds also for the 
bisaturated case. It is also worth noting that neither f,(l, H) =fs(/, H) nor 
g,.(l, m, H) = g,(Z, m, H) holds in general. 

We now consider the corresponding problems for hypergraphs. Since the 
proofs are completely analogous to those given above we just state the 
results and leave the detailed proofs to the reader. 

Let K!k) denote the k-uniform complete hypergraph on r vertices and let 
KLE!...,k denote the k-uniform complete k-partite hypergraph with ri vertices 
in the ith class (1 d i < k). Let Gk(m,, m,,..., mk) denote a k-uniform k-par- 
tite hypergraph with mi vertices in the ith class (1 < i 6 k). 

A k-uniform hypergraph G is strongly Kik) saturated if the number of 
copies of Kik) m G increases whenever we add an edge to G. G is weakly 
K!k’ saturated if there is a sequence of graphs G = G, c G, c . . . c G, = Kjk), 
where I is the number of vertices of G, Gi is obtained from Gi-, by the 
addition of an edge, and Gi contains at least one more copy of Kik) than 
G,- , (1 <i,< t). Let F,(/, K”‘) (F,(& r;r!“))) denote the minimal possible 
number of edges in a strongly K!k) saturated (weakly Kfk) saturated) 
k-uniform hypergraph on I vertices. 
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Similarly G = G,Jm, ,..., mk) is strongly-Kit,!,,,, k-saturated if the number 
of copies of K = Ki:,!,.,,, in G (with ri vertices in the ith class) increases 
whenever we add to G an edge containing one vertex from each class of 
vertices of G. G is weakly K-k-saturated if there is a sequence of graphs 
G = G,, c G, c . . . c G, = K:/>,.,,,, such that Gi is obtained from Gi- i by the 
addition of an edge containing one vertex from each vertex class of Gj- i, 
and there exists a copy of K in Gi (with ri vertices in the ith class) which is 
not included in Gi-, (1 6 i< t). Let G,(m, ,..., mk, KLf.! ,.,, J (G,,(m, ,..., mk, 
K!:,!..,,l)) denote the minimal possible number of edges in a strongly 
K-k-saturated (weakly-K-k-saturated) hypergraph G = Gk(m, ,..., mk). 

The next theorem generalizes (3.1), (3.2), (3.3), and (3.4). FJ1, Kzkj) was 
determined by Bollobas in [a]. 

THEOREM 3.4. (i) For 12 r 2 k, 

(ii) For m,>ri>k, i= I,..., k, 

Gs(ml~...~ mkT  K:;!...,,) = G,h,..., mk, K:;,!.,,,) 

=ifi,mi-i$, Cm,-ri+l). 

Returning to graphs we close this paper with a proof of Theorem 3.2. 

Proof of Theorem 3.2. (i) Suppose H = ( V, E) and let h = 1 V(H)1 - 2. 
We first show that for every Z, m > h 

fJl+ m, H) 6 f,(l, H) + f,(m, H) + h*. (3.5) 

Indeed let G, = (Vi, E,) and G2 = (V,, E,) be two weakly H-saturated 
graphs with IV,1 =I, lVzl =m, lE,l =f,,,(l, H), lE21 =f,(m, H). Let 
G = ( V, E) be the graph obtained from the disjoint union of G, and G2 by 
joining each of the vertices of an h-subset Ui c V, to each of the vertices of 
an h-subset U2 c V,. Clearly ) VI = I+ m and IEl = f,,,(Z, H) + f,,,(m, H) + h*. 
To prove (3.5) we show that G is weakly H-saturated. By the choice of G, 
and G, one can add edges successively to G to obtain a graph G’ such that 
G’[ Vi] and G’[ V,] are complete and each addition increases the number 
of copies of H. Now we can add, in an arbitrary order, all the edges that 
join a vertex of U1 to a vertex of V,; each such addition adds a new copy 
of&+2 and thus, clearly, also a new copy of H. We now add all missing 
edges in an arbitrary order. Since now U, is adjacent to all vertices each 
such addition adds a new copy of K,, + 2 and thus also of H. This completes 
the proof of (3.5). 
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Define g(n) =f,(n, H) + h2. By (3.5) for 1, m 2 h, 

gU + 4 6 gU) + gW3 

i.e., g is subadditive. Therefore, as is well known, the limit Cm,, co g(l)/l 
exists and thus the limit lim,, o. f,,,(l, H)/Z exists, as needed. 

It is worth noting that similar construction to the one we used shows 
that for I, m > h, f,,,(l+ m -h, H) <f,,,(l, H) +f,.(m, H). Using this one can 
show that g(n) =f,(n + h, H) is subadditive and obtain a similar proof 
of (i). 

(ii) Here it is very easy to show that the function g(n) = gW(n, m, H) 
is subadditive. The result follows as before. u 
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